Testing k-colorability

Noga Alon and Michael Krivelevich:

Speaker: Joseph, Chuang-Chieh Lin

Advisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Dept. Computer Science and Information Engineering
National Chung Cheng University, Taiwan

October 22, 2008
Outline

1. Introduction
2. The algorithm
3. Preliminaries
 - Some notations
 - Main idea of the proof
4. Detailed analysis
Graph model: **dense graph** (adjacency matrix) for $G(V,E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V| = n$ vertices and $|E| = \Omega(n^2)$ edges.

A graph property:
- A set of graphs closed under isomorphisms.

Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P}:
 - $\geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy \mathbb{P}
Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V| = n$ vertices and $|E| = \Omega(n^2)$ edges.

A graph property:
- A set of graphs closed under isomorphisms.

Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P}:
 - $\geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy \mathbb{P}.
Graph model: dense graph (adjacency matrix) for $G(V, E)$.
- undirected, no self-loops, ≤ 1 edge between any $u, v \in V$
- $|V| = n$ vertices and $|E| = \Omega(n^2)$ edges.

A graph property:
- A set of graphs closed under isomorphisms.

Let \mathbb{P} be a graph property.
- ϵ-far from satisfying \mathbb{P}:
 - $\geq \epsilon n^2$ edges should be deleted or added to let the graph satisfy \mathbb{P}
Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time

A property tester for \(\mathbb{P} \):
- A randomized algorithm such that
 - it answers “YES” with probability of \(\geq 2/3 \) if \(G \) satisfies \(\mathbb{P} \), and
 - it answers “NO” with probability of \(\geq 2/3 \) if \(G \) is \(\epsilon \)-far from satisfying \(\mathbb{P} \)

\(\mathbb{P} \) is testable if
- \(\exists \) a property tester for \(\mathbb{P} \) such that its running time complexity is independent of \(n \).
Introduction (property testing)

- **Property testing:**
 - it does NOT precisely determine YES or NO for a decision problem;
 - requires sublinear running time

- **A property tester** for P:
 - A randomized algorithm such that
 - it answers “YES” with probability of $\geq 2/3$ if G satisfies P, and
 - it answers “NO” with probability of $\geq 2/3$ if G is ϵ-far from satisfying P

- P is testable if
 - \exists a property tester for P such that its running time complexity is independent of n.

Computation Theory Lab, CSIE, CCU, Taiwan Testing k-colorability
Property testing:
- it does NOT precisely determine YES or NO for a decision problem;
- requires sublinear running time

A property tester for \(\mathcal{P} \):
- A randomized algorithm such that
 - it answers “YES” with probability of \(\geq 2/3 \) if \(G \) satisfies \(\mathcal{P} \), and
 - it answers “NO” with probability of \(\geq 2/3 \) if \(G \) is \(\epsilon \)-far from satisfying \(\mathcal{P} \)

\(\mathcal{P} \) is testable if
- \(\exists \) a property tester for \(\mathcal{P} \) such that its running time complexity is independent of \(n \).
Testing emptiness of a graph

- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1/\epsilon)$
- How can it be done?

Testing connectivity is trivial (for dense graphs).
- Why?
Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

- Testing connectivity is trivial (for dense graphs).
 - Why?
Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

- Testing connectivity is trivial (for dense graphs).
 - Why?
Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

- Testing connectivity is trivial (for dense graphs).
 - Why?
Examples

- Testing emptiness of a graph
 - Testing H-freeness, where H is an edge.
 - Query complexity and time complexity: $O(1/\epsilon)$
 - How can it be done?

- Testing connectivity is trivial (for dense graphs).
 - Why?
Testing emptiness of a graph
- Testing H-freeness, where H is an edge.
- Query complexity and time complexity: $O(1/\epsilon)$
- How can it be done?

Testing connectivity is trivial (for dense graphs).
- Why?
Introduction (k-colorability)

- a (proper) k-coloring: a function $f : V \rightarrow \{1, 2, \ldots, k\}$ such that

 $f(u) \neq f(v)$ if $(u, v) \in E$.

- Equivalent to a k-partition (V_1, V_2, \ldots, V_k) of V such that for each i, $(u, v) \notin E$ for every $u, v \in V_i$.

- For convenience, we denote $\{1, 2, \ldots, k\}$ by $[k]$.

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability
Introduction (k-colorability)

- a (proper) k-coloring: a function $f : V \rightarrow \{1, 2, \ldots, k\}$ such that
 - $f(u) \neq f(v)$ if $(u, v) \in E$.

- Equivalent to a k-partition (V_1, V_2, \ldots, V_k) of V such that for each i, $(u, v) \notin E$ for every $u, v \in V_i$.

- For convenience, we denote $\{1, 2, \ldots, k\}$ by $[k]$.

Introduction (k-colorability)

- a (proper) k-coloring: a function $f : V \rightarrow \{1, 2, \ldots, k\}$ such that

 - $f(u) \neq f(v)$ if $(u, v) \in E$.

- Equivalent to a k-partition (V_1, V_2, \ldots, V_k) of V such that for each i, $(u, v) \notin E$ for every $u, v \in V_i$.

- For convenience, we denote $\{1, 2, \ldots, k\}$ by $[k]$.

Testing k-colorability
a (proper) k-coloring: a function $f : V \rightarrow \{1, 2, \ldots, k\}$ such that

- $f(u) \neq f(v)$ if $(u, v) \in E$.

Equivalent to a k-partition (V_1, V_2, \ldots, V_k) of V such that for each i, $(u, v) \notin E$ for every $u, v \in V_i$.

For convenience, we denote $\{1, 2, \ldots, k\}$ by $[k]$.

Introduction (k-colorability)
Introduction (k-colorability)

- **NP-complete for** \(k \geq 3 \)

- *k*-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi’s regularity Lemma)
 - Dependency of tower of 2’s of height polynomial in \(1/\epsilon \).

- Query complexity: \(O(k^2 \ln^2 k/\epsilon^4) \);
- Time complexity: \(\exp(k \ln k/\epsilon^2) \); [Alon and Krivelevich 2002; this paper]
NP-complete for $k \geq 3$

- k-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi’s regularity Lemma)
 - Dependency of tower of 2’s of height polynomial in $1/\epsilon$.
 - Query complexity: $O(k^2 \ln^2 k/\epsilon^4)$;
 Time complexity: $\exp(k \ln k/\epsilon^2)$; [Alon and Krivelevich 2002; this paper]
Introduction (\(k\)-colorability)

- **NP**-complete for \(k \geq 3\)

- \(k\)-colorability is testable.
 - Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi’s regularity Lemma)
 - Dependency of tower of 2’s of height polynomial in \(1/\epsilon\).
 - Query complexity: \(O(k^2 \ln^2 k/\epsilon^4)\);
 Time complexity: \(\exp(k \ln k/\epsilon^2)\); [Alon and Krivelevich 2002; this paper]
Introduction (\(k\)-colorability)

- **NP-complete** for \(k \geq 3\)

- **\(k\)-colorability is testable.**

 - Hereditary graph property is testable [Alon and Shapira 2008] (by Szemerédi’s regularity Lemma)
 - Dependency of tower of 2’s of height polynomial in \(1/\epsilon\).

 - Query complexity: \(O(k^2 \ln^2 k/\epsilon^4)\);
 Time complexity: \(\exp(k \ln k/\epsilon^2)\); [Alon and Krivelevich 2002; this paper]
Outline

1. Introduction

2. The algorithm

3. Preliminaries
 - Some notations
 - Main idea of the proof

4. Detailed analysis
The property tester for k-colorability is very simple.

<table>
<thead>
<tr>
<th>k-coloring-tester (G, s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate a random subset $R \subset V$ of size $s = 36k \ln k/\epsilon^2$</td>
</tr>
<tr>
<td>Exhaustively color R by k colors.</td>
</tr>
<tr>
<td>Return YES if $G[R]$ is k-colorable, and return NO otherwise.</td>
</tr>
</tbody>
</table>
Testing k-colorability
Introduction
The algorithm
Preliminaries
Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability

Graph with nodes A, B, C, D, E, F, G, H, I, each node colored with integers from 1 to 5.

- Node A is colored red.
- Node B is colored with 2, 3, 4, 5.
- Node C is colored with 2, 3, 4, 5.
- Node D is colored with 1, 2, 3, 4, 5.
- Node E is colored with 2, 3, 4, 5.
- Node F is colored with 2, 3, 4, 5.
- Node G is colored with 2, 3, 4, 5.
- Node H is colored with 1, 2, 3, 4, 5.
- Node I is colored with 1, 2, 3, 4, 5.
Testing k-colorability
Introduction
The algorithm
Preliminaries
Detailed analysis

Computation Theory Lab, CSIE, CCU, Taiwan

Testing \(k \)-colorability
Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability
Testing k-colorability
Testing k-colorability
Testing k-colorability
Testing k-colorability
The property tester for k-colorability

- If G is k-colorable, then the algorithm always returns YES.

- What if G is ϵ-far from being k-colorable?
The property tester for k-colorability

- If G is k-colorable, then the algorithm always returns YES.
- What if G is ϵ-far from being k-colorable?
Outline

1. Introduction
2. The algorithm
3. Preliminaries
 - Some notations
 - Main idea of the proof
4. Detailed analysis
Given $S \subseteq V$ and its k-partition $\phi : S \rightarrow [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$

$L_\phi(v) = [k] \setminus \{1 \leq i \leq k : \exists u \in S \cap N(v), \phi(u) = i\}$.

$v \in V \setminus S$ is called colorless if $L_\phi(v) = 0$.
Some notations

- Given $S \subseteq V$ and its k-partition $\phi : S \rightarrow [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$

$$L_{\phi}(v) = [k] \setminus \{1 \leq i \leq k : \exists u \in S \cap N(v), \phi(u) = i\}.$$

- $v \in V \setminus S$ is called colorless if $L_{\phi}(v) = 0$.

Some notations

- Given $S \subseteq V$ and its k-partition $\phi : S \to [k]$.

The list of feasible labels of a vertex $v \in V \setminus S$

$L_\phi(v) = [k] \setminus \{1 \leq i \leq k : \exists u \in S \cap N(v), \phi(u) = i\}$.

- $v \in V \setminus S$ is called **colorless** if $L_\phi(v) = 0$.
Some notations (contd.)

- \(S = \{A, B, E, H, I\} \).
- \(\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1. \)
- No colorless vertices w.r.t. \((S, \phi)\).
Some notations (contd.)

- \(S = \{A, B, E, H, I\} \).
- \(\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1 \).
- No colorless vertices w.r.t. \((S, \phi)\).
Some notations (contd.)

- \(S = \{A, B, E, H, I\} \).
- \(\phi(A) = 1, \phi(B) = 3, \phi(E) = 2, \phi(H) = 1, \phi(I) = 1 \).
- No colorless vertices w.r.t. \((S, \phi)\).
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.

- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi : S \rightarrow [k]$.

- Our aim is to find w.h.p. that:

 - a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

 - **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)

 - **Extending ϕ**: giving other vertices colors based on (S, ϕ).

Computation Theory Lab, CSIE, CCU, Taiwan
Testing k-colorability
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.

- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi : S \rightarrow [k]$.

- Our aim is to find w.h.p. that:

 - a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

 - **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)
 - **Extending ϕ**: giving other vertices colors based on (S, ϕ).
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.

- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi : S \to [k]$.

- Our aim is to find w.h.p. that:
 - a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

 - **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)

 - **Extending ϕ**: giving other vertices colors based on (S, ϕ).
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi : S \rightarrow [k]$.
- Our aim is to find w.h.p. that:
 - a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

- **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)
- **Extending ϕ**: giving other vertices colors based on (S, ϕ).

Testing k-colorability
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.

- Suppose we are given a subset $S \subset R \subset V(G)$ and its k partition $\phi : S \rightarrow [k]$.

- Our aim is to find w.h.p. that:

 ▶ a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.

 - **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)

 - **Extending ϕ**: giving other vertices colors based on (S, ϕ).
Main idea of the proof

- Assume that G is ϵ-far from being k-colorable.
- Suppose we are given a subset $S \subset R \subset V(G)$ and its k-partition $\phi : S \rightarrow [k]$.
- Our aim is to find w.h.p. that:
 - a succinct (i.e., short & concise) witness in $R \setminus S$ to the fact that ϕ can NOT be extended to a (proper) k-coloring.
 - **Witness**: a set of vertices which can be used to find out non-k-colorability. (colorless or restricting vertices)
 - **Extending ϕ**: giving other vertices colors based on (S, ϕ).
Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. \((S, \phi)\) ...
 - It is easy to obtain a witness for nonextendability of \(\phi\).

- What if the number of colorless vertices is small?
 - As \(G\) is \(\epsilon\)-far from being \(k\)-colorable, one can show that:
 - \(\exists W \subseteq V\) (\(|W|\) is large) s.t. coloring every vertex \(v \in W\) by any feasible color w.r.t. \(\phi\) reduces the number of feasible colors of at least \(\Omega(\epsilon) n\) neighbors of \(v\).
 - It helps approach the previous case.
If there are a lot of colorless vertices w.r.t. \((S, \phi)\) ...

- It is easy to obtain a witness for nonextendability of \(\phi\).

What if the number of colorless vertices is small?

- As \(G\) is \(\epsilon\)-far from being \(k\)-colorable, one can show that:
 - \(\exists W \subseteq V\) (\(|W|\) is large) s.t. coloring every vertex \(v \in W\) by any feasible color w.r.t. \(\phi\) reduces the number of feasible colors of at least \(\Omega(\epsilon)n\) neighbors of \(v\).

- It helps approach the previous case.
Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. (S, ϕ) ...
 - It is easy to obtain a witness for nonextendability of ϕ.

- What if the number of colorless vertices is small?
 - As G is ϵ-far from being k-colorable, one can show that:
 - $\exists W \subseteq V$ ($|W|$ is large) s.t. coloring every vertex $v \in W$ by any feasible color w.r.t. ϕ reduces the number of feasible colors of at least $\Omega(\epsilon)n$ neighbors of v.
 - It helps approach the previous case.
If there are a lot of colorless vertices w.r.t. \((S, \phi)\) ... It is easy to obtain a witness for nonextendability of \(\phi\).

What if the number of colorless vertices is small?
As \(G\) is \(\epsilon\)-far from being \(k\)-colorable, one can show that:

\[
\exists W \subset V \ (|W| \text{ is large}) \text{ s.t. coloring every vertex } v \in W \text{ by any feasible color w.r.t. } \phi \text{ reduces the number of feasible colors of at least } \Omega(\epsilon)n \text{ neighbors of } v.
\]

It helps approach the previous case.
Main idea of the proof (contd.)

- If there are a lot of colorless vertices w.r.t. \((S, \phi)\) ...
 - It is easy to obtain a witness for nonextendability of \(\phi\).

- What if the number of colorless vertices is small?
 - As \(G\) is \(\epsilon\)-far from being \(k\)-colorable, one can show that:
 - \(\exists \ W \subset V\ (|W| \text{ is large})\ s.t.\ \text{coloring every vertex } v \in W \text{ by any feasible color w.r.t. } \phi \text{ reduces the number of feasible colors of at least } \Omega(\epsilon)n \text{ neighbors of } v.\)

 - It helps approach the previous case.
The above process can be represented by an auxiliary tree T.

- Every node of T corresponds to a colorless or a restricting vertex v.
 - Each node is labeled by a vertex of G or by the symbol $\#$ (terminal node).

- Every edge of T corresponds to a feasible color for v.

Testing k-colorability
The above process can be represented by an auxiliary tree T.

Every node of T corresponds to a colorless or a restricting vertex v.

- Each node is labeled by a vertex of G or by the symbol $\#$ (terminal node).

Every edge of T corresponds to a feasible color for v.
Main idea of the proof (contd.)

- The above process can be represented by an auxiliary tree T.
- Every node of T corresponds to a colorless or a restricting vertex v.
 - Each node is labeled by a vertex of G or by the symbol $\#$ (terminal node).
- Every edge of T corresponds to a feasible color for v.
Main idea of the proof (contd.)

Testing k-colorability
Let t be a node of T.

The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t)$) along this path.

If t is labeled by v and v has a neighbor in $S(t)$ whose color in $\phi(t)$ is also i, the son of v along the edge labeled by i is labeled by $\#$.

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability
Let t be a node of T.

The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t)$) along this path.

If t is labeled by v and v has a neighbor in $S(t)$ whose color in $\phi(t)$ is also i, then the son of v along the edge labeled by i is labeled by $\#$.
Let t be a node of T.

The path from the root of T to t not including t itself defines a k-partition (we call it $\phi(t)$) of the labels (i.e., vertices of G; we call it $S(t)$) along this path.

If t is labeled by v and v has a neighbor in $S(t)$ whose color in $\phi(t)$ is also i, the son of v along the edge labeled by i is labeled by $\#$.
Since the degree of each node of T can be as large as k, the size of T grows exponentially.

We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1.
Since the degree of each node of T can be as large as k, the size of T grows exponentially.

We therefore need the probability of choosing colorless or restricting vertices to be exponentially close to 1.
Outline

1. Introduction
2. The algorithm
3. Preliminaries
 - Some notations
 - Main idea of the proof
4. Detailed analysis
Reducing feasible colors

- For every \(v \in V \setminus (S \cup U) \):

Estimation of \# excluded feasible colors of \(N(v) \) outside \(S \cup U \)

\[
\delta_{\phi}(v) = \min_{i \in L_{\phi}(v)} |\{ u \in N(v) \setminus (S \cup U) : i \in L_{\phi}(u) \}|.
\]

- \(U \) is the set of colorless vertices w.r.t. \((S, \phi) \).
\[\delta_\phi(B) = \min_{i \in \{3, 4, 5\}} \{4, 4, 4\} = 4. \]
\[\delta_\phi(C) = \min_{i \in \{2, 3, 4, 5\}} \{0, 1, 1, 1\} = 0. \]
\[\delta_\phi(D) = \min_{i \in \{2, 3, 4, 5\}} \{0, 2, 2, 2\} = 0. \]
\[\delta_\phi(F) = \min_{i \in \{2, 3, 4, 5\}} \{0, 2, 2, 2\} = 0. \]
\[\delta_\phi(G) = \min_{i \in \{3, 4, 5\}} \{4, 4, 4\} = 4. \]
\[\delta_\phi(H) = \min_{i \in \{1, 3, 4, 5\}} \{0, 4, 4, 4\} = 0. \]
Restricting vertices

Given a pair \((S, \phi)\), a vertex is called **restricting** if \(\delta_\phi(v) \geq \epsilon n/2\).

\[
W := \{ v \in V \setminus (S \cup U) \mid \delta_\phi(v) \geq \epsilon n/2 \}.
\]
Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most

$$(n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v)$$

edges.

- “ϵ-far from being k-colorable” makes sense only if $\epsilon n^2 < (n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v)$.
- Thus we have the following corollary.
Claim 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most

$$ (n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v) $$

edges.

- “ϵ-far from being k-colorable” makes sense only if
 $$ \epsilon n^2 < (n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v). $$

- Thus we have the following corollary.
Clai 1

For every subset $S \subset V$ and every k-partition ϕ of S, to make the graph be k-colorable requires deleting at most

$$(n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v)$$

\begin{itemize}
 \item “ϵ-far from being k-colorable” makes sense only if $\epsilon n^2 < (n - 1)(|S| + |U|) + \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v)$.
 \item Thus we have the following corollary.
\end{itemize}
Corollary 4.1

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subset V(G)$, $\phi : S \rightarrow [k]$, one has

$$\sum_{v \in V \setminus (S \cup U)} \delta_\phi(v) > \epsilon n^2 - n(|S| + |U|),$$

where U is the set of colorless vertices w.r.t. (S, ϕ).
The number of restricting vertices must be large

Claim 2

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subset V(G)$, $\phi : S \rightarrow [k]$, one has

$$|U| + |W| > \frac{\epsilon n}{2} - |S|.$$

Proof.

$$\epsilon n^2 - n(|S| + |U|) < \sum_{v \in V \setminus (S \cup U)} \delta_\phi(v) \leq |W|(n - 1) + \sum_{v \in V \setminus (S \cup U \cup W)} \delta_\phi(v) < |W|n + \frac{\epsilon n^2}{2}.$$
The number of restricting vertices must be large

Claim 2

If G is ϵ-far from being k-colorable, then for any pair (S, ϕ), where $S \subseteq V(G)$, $\phi : S \rightarrow [k]$, one has

$$|U| + |W| > \frac{\epsilon n}{2} - |S|.$$

Proof.

$$\epsilon n^2 - n(|S| + |U|) < \sum_{v \in V \setminus (S \cup U)} \delta_{\phi}(v) \leq |W|(n - 1) + \sum_{V \setminus (S \cup U \cup W)} \delta_{\phi}(v)$$

$$< |W|n + \frac{\epsilon n^2}{2}.$$
Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
 - $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
 - $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.

A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.
Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.
Consider a leaf t of T.

- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.

A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.
Recall the auxiliary tree T for the coloring process

- Consider a leaf t of T.
- $U(t)$: the set of colorless vertices w.r.t. $(S(t), \phi(t))$.
- $W(t)$: the set of restricting vertices w.r.t. $(S(t), \phi(t))$.
- A nonterminal node of T is labeled only when a vertex in $U(t) \cup W(t)$ is chosen.
An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.
- We cannot make more than $nk/(\epsilon n/2) = 2k/\epsilon$ steps down from the roof of T to a leaf of T.
An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \frac{\epsilon n}{2}$ colors.
- We cannot make more than $nk/(\epsilon n/2) = 2k/\epsilon$ steps down from the roof of T to a leaf of T.
An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \epsilon n/2$ colors.
- We cannot make more than $nk/(\epsilon n/2) = 2k/\epsilon$ steps down from the roof of T to a leaf of T.
An upper bound on the depth of T

Claim 3

The depth of T is bounded by $\frac{2k}{\epsilon}$.

Proof.

- The depth of T is mainly due to the restricting vertices.
- The total length of the lists of feasible colors initially: nk.
- Coloring a vertex $w \in W$: reduces $\geq \frac{\epsilon n}{2}$ colors.
- We cannot make more than $nk/(\epsilon n/2) = 2k/\epsilon$ steps down from the roof of T to a leaf of T.

Computation Theory Lab, CSIE, CCU, Taiwan

Testing k-colorability
Claim 4

If a leaf t^* of T is labeled by $\#$, then $\phi(t^*)$ is not a proper k-coloring of $S(t^*)$.

Claim 5

If all leaves t^*'s of T are terminal nodes after j rounds of the algorithm, then the subgraph induced by the labels along the path from the root of T to t^* is not k-colorable.
The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k, \frac{2k}{\epsilon}}$ of depth $\frac{2k}{\epsilon}$.
- $T_{k, \frac{2k}{\epsilon}}$ has at most $1 + k + \ldots + k \cdot \frac{2k}{\epsilon} \leq k \cdot \frac{2k}{\epsilon} + 1$ vertices.
- A round of the algorithm is called *successful* if a colorless vertex or a restricting vertex is picked.
The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

* T can be embedded into a k-ary tree $T_k, \frac{2k}{\epsilon}$ of depth $\frac{2k}{\epsilon}$.

* $T_k, \frac{2k}{\epsilon}$ has at most $1 + k + \ldots + k^{\frac{2k}{\epsilon}} \leq k^{\frac{2k}{\epsilon}+1}$ vertices.

* A round of the algorithm is called *successful* a colorless vertex or a restricting vertex is picked.
The leaves of T are all leaves w.h.p. before long

Claim 6

If G is ϵ-far from being k-colorable, then after $36k \ln k/\epsilon^2$ rounds, with probability $\geq 2/3$ all leaves of T are terminal nodes.

Proof.

- T can be embedded into a k-ary tree $T_{k, \frac{2k}{\epsilon}}$ of depth $\frac{2k}{\epsilon}$.
- $T_{k, \frac{2k}{\epsilon}}$ has at most $1 + k + \ldots + k \frac{2k}{\epsilon} \leq k \frac{2k}{\epsilon} + 1$ vertices.
- A round of the algorithm is called **successful** if a colorless vertex or a restricting vertex is picked.
Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k / \epsilon^2$ rounds of the algorithm.

- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.

- Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t)$) is at least $\epsilon/2 - S(t)/n = \epsilon/2 - o(1) \geq \epsilon/3$.
Proof of Claim 6 (contd.)

Proof.

Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.

The total number of successful rounds for the path from the root of T to t is equal to the depth of t.

Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t)$) is at least $\epsilon/2 - S(t)/n = \epsilon/2 - o(1) \geq \epsilon/3$.
Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.

- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.

- Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t)$) is at least $\epsilon/2 - S(t)/n = \epsilon/2 - o(1) \geq \epsilon/3$.
Proof of Claim 6 (contd.)

Proof.

- Fix some leaf node t of T after $36k \ln k/\epsilon^2$ rounds of the algorithm.
- The total number of successful rounds for the path from the root of T to t is equal to the depth of t.
- Besides, the probability of choosing a colorless or restricting vertex (i.e., $U(t) \cup W(t)$) is at least $\epsilon/2 - S(t)/n = \epsilon/2 - o(1) \geq \epsilon/3$.
Proof.

- $\Pr[t \text{ is a nonterminal leaf of } T]$ can be bounded by $\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon]$.
- $B(n, p)$ is the Binomial random variable of n Bernoulli trials with probability p of success.

The Chernoff bound for $B(n, p)$:

$$\Pr[B(m, p) \leq k] \leq \exp \left(-\frac{1}{2p} \frac{(mp - k)^2}{m} \right).$$
Proof of Claim 6 (contd.)

Proof.

- $\Pr[t \text{ is a nonterminal leaf of } T]$ can be bounded by $\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon]$.
 - $B(n, p)$ is the Binomial random variable of n Bernoulli trials with probability p of success.
 - The Chernoff bound for $B(n, p)$:

$$\Pr[B(m, p) \leq k] \leq \exp \left(-\frac{1}{2p} \frac{(mp - k)^2}{m} \right).$$
Proof of Claim 6 (contd.)

Proof.

- **Pr** \([B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon] < k^{-3k/\epsilon}\) by the Chernoff bound.

 Thus by the union bound we conclude that the probability that some node of \(T_k, \frac{2k}{\epsilon}\) is a nonterminal leaf is

 \[\leq |V(T_k, \frac{2k}{\epsilon})| \cdot k^{-3k/\epsilon} < 1/3.\]

- That means, the probability that the algorithm finds a proper \(k\)-coloring is less than 1/3.

- Hence we derive the error probability of the algorithm < 1/3.
Proof of Claim 6 (contd.)

Proof.

- \(\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon] < k^{-3k/\epsilon} \) by the Chernoff bound.

- Thus by the union bound we conclude that the probability that some node of \(T_k, \frac{2k}{\epsilon} \) is a nonterminal leaf is

 \[\leq |V(T_k, \frac{2k}{\epsilon})| \cdot k^{-\frac{3k}{\epsilon}} < 1/3. \]

- That means, the probability that the algorithm finds a proper \(k \)-coloring is less than \(1/3 \).

- Hence we derive the error probability of the algorithm < \(1/3 \).
Proof.

- \(\Pr[B(36k \ln k/\varepsilon^2, \varepsilon/3) < 2k/\varepsilon] < k^{-3k/\varepsilon} \) by the Chernoff bound.

- Thus by the union bound we conclude that the probability that some node of \(T_k, \frac{2k}{\varepsilon} \) is a nonterminal leaf is
 \[
 \leq |V(T_k, \frac{2k}{\varepsilon})| \cdot k^{-\frac{3k}{\varepsilon}} < 1/3.
 \]

- That means, the probability that the algorithm finds a proper \(k \)-coloring is less than 1/3.

- Hence we derive the error probability of the algorithm < 1/3.
Proof of Claim 6 (contd.)

Proof.

- \(\Pr[B(36k \ln k/\epsilon^2, \epsilon/3) < 2k/\epsilon] < k^{-3k/\epsilon} \) by the Chernoff bound.

- Thus by the union bound we conclude that the probability that some node of \(T_k, \frac{2k}{\epsilon} \) is a nonterminal leaf is

\[
\leq |V(T_k, \frac{2k}{\epsilon})| \cdot k^{-\frac{3k}{\epsilon}} < \frac{1}{3}.
\]

- That means, the probability that the algorithm finds a proper \(k \)-coloring is less than \(1/3 \).

- Hence we derive the error probability of the algorithm < \(1/3 \).
Thank you!