Testing expansion in bounded-degree graphs

Artur Czumaj and Christian Sohler

The 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’2007) 570–578.

Speaker: Joseph, Chuang-Chieh Lin
Supervisor: Professor Maw-Shang Chang

Computation Theory Laboratory
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

June 9, 2010
Outline

1. Background on property testing
2. Testing expansion
3. The property tester by Czumaj & Sohler
4. Preliminaries
5. The sketch of the complexity analysis
1. Background on property testing

2. Testing expansion

3. The property tester by Czumaj & Sohler

4. Preliminaries

5. The sketch of the complexity analysis
Try to answer “yes” or “no” for the following relaxed decision problems by observing only a small fraction of the input.

- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?
Try to answer “yes” or “no” for the following relaxed decision problems by observing only a small fraction of the input.

- Does the input satisfy a designated property, or
- is ϵ-far from satisfying the property?
In property testing, we use ϵ-far to say that the input is far from a certain property.

ϵ: the least fraction of the input needs to be modified.

For example:
- A sequence of integers $L = (0, 2, 3, 4, 1)$.
- Allowed operations: integer deletions
- L is 0.2-far from being monotonically nondecreasing.
In property testing, we use ϵ-far to say that the input is far from a certain property.

ϵ: the least fraction of the input needs to be modified.

For example:

- A sequence of integers $L = (0, 2, 3, 4, 1)$.
- Allowed operations: integer deletions
- L is 0.2-far from being monotonically nondecreasing.
The model for bounded-degree graphs

- **Graph model:** adjacency list for graphs with vertex-degree bounded by d.
 - It takes $O(1)$ time to access to a function $f_G : [n] \times [d] \mapsto [n] \times \{+\}$.
 - The value $f_G(v, i)$ is the ith neighbor of v or a special symbol '+' if v has less than i neighbors.
 - In this paper, $d \geq 4$.

- ϵ-far from satisfying a graph property \mathbb{P}:
 - One has to modify $> \epsilon dn$ entries in f_G (i.e., $> \epsilon dn/2$ edges) to make the input graph satisfy \mathbb{P}.
The model for **bounded-degree** graphs

- **Graph model**: adjacency **list** for graphs with vertex-degree bounded by \(d\).
 - It takes \(O(1)\) time to access to a function \(f_G : [n] \times [d] \mapsto [n] \times \{+\}\).
 - The value \(f_G(v, i)\) is the \(i\)th neighbor of \(v\) or a special symbol ‘+’ if \(v\) has less than \(i\) neighbors.
 - In this paper, \(d \geq 4\).

- \(\epsilon\)-far from satisfying a graph property \(\mathbb{P}\):
 - one has to modify \(> \epsilon dn\) entries in \(f_G\) (i.e., \(> \epsilon dn/2\) edges) to make the input graph satisfy \(\mathbb{P}\).
The complexity measure: queries.

The query complexity (say \(q(n, d, \epsilon)\)) is asked to be sublinear in \(|V| = n\).

\[q(n, d, \epsilon) = o(f(n)) \quad \text{if} \quad \lim_{n \to \infty} \frac{q(n, d, \epsilon)}{f(n)} \to 0, \] where \(\epsilon\) and \(d\) are viewed as constants.
The complexity measure: queries.

The query complexity (say $q(n, d, \varepsilon)$) is asked to be sublinear in $|V| = n$.

- $q(n, d, \varepsilon) = o(f(n))$ if $\lim_{n \to \infty} \frac{q(n, d, \varepsilon)}{f(n)} \to 0$, where ε and d are viewed as constants.
A property tester for \mathbb{P} is an algorithm utilizing sublinear queries such that:

1. if the input satisfies \mathbb{P}:
 - answers “yes” with probability $\geq 2/3$ (1 → one-sided error);
2. if the input is ϵ-far from satisfying \mathbb{P}:
 - answers “no” with probability $\geq 2/3$.
Unlike testing graph properties in the adjacency matrix model, only a few, very simple graph properties are known to be testable (i.e., query complexity is independent of n).

For most of nontrivial graph properties, super-constant lower bounds exist.

- bipartiteness: $\Omega(\sqrt{n})$.
- 3-colorability: $\Omega(n)$.
- acyclicity (in directed graphs): $\Omega(n^{1/3})$.
- ...

The focus turned on property testers with sublinear query complexity.
Outline

1. Background on property testing

2. Testing expansion

3. The property tester by Czumaj & Sohler

4. Preliminaries

5. The sketch of the complexity analysis
Definition 2.1

Let $\alpha > 0$. A graph $G = (V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$,
 $$N_G(U, W) = \{ v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E \}.$$

- For example:
 - What is the expansion of K_n?
 - What is the expansion of C_n?
 - What is the lower bound on the expansion of a k-club with n vertices?
 - What is the lower bound on the expansion of an s-plex with n vertices?
\(\alpha\)-expanders

Definition 2.1

Let \(\alpha > 0\). A graph \(G = (V, E)\) is an \(\alpha\)-expander (The expansion of \(G\) is \(\alpha\)) if for every \(U \subseteq V\) with \(|U| \leq n/2\), it holds that \(N_G(U, V) \geq \alpha \cdot |U|\).

- For \(U, W \subseteq V\),
 \[N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.\]

- For example:
 - What is the expansion of \(K_n\)?
 - What is the expansion of \(C_n\)?
 - What is the lower bound on the expansion of a \(k\)-club with \(n\) vertices?
 - What is the lower bound on the expansion of an \(s\)-plex with \(n\) vertices?
Definition 2.1

Let $\alpha > 0$. A graph $G = (V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$,
 \[N_G(U, W) = \{ v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E \}. \]

- For example:
 - What is the expansion of K_n?
 - What is the expansion of C_n?
 - What is the lower bound on the expansion of a k-club with n vertices?
 - What is the lower bound on the expansion of an s-plex with n vertices?
Definition 2.1

Let $\alpha > 0$. A graph $G = (V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$,

 $N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}$.

- For example:
 - What is the expansion of K_n?
 - What is the expansion of C_n?
 - What is the lower bound on the expansion of a k-club with n vertices?
 - What is the lower bound on the expansion of an s-plex with n vertices?
Definition 2.1

Let $\alpha > 0$. A graph $G = (V, E)$ is an α-expander (The expansion of G is α) if for every $U \subseteq V$ with $|U| \leq n/2$, it holds that $N_G(U, V) \geq \alpha \cdot |U|$.

- For $U, W \subseteq V$,
 $$N_G(U, W) = \{v \in W \setminus U : \exists u \in U \text{ such that } (v, u) \in E\}.$$

- For example:
 - What is the expansion of K_n?
 - What is the expansion of C_n?
 - What is the lower bound on the expansion of a k-club with n vertices?
 - What is the lower bound on the expansion of an s-plex with n vertices?
A well-known fact

Theorem 2.2 (Planar Separator Theorem (Lipton & Tarjan 1979))

Every planar graph with \(n \) vertices (\(n \) is sufficiently large) has a subset of vertices \(A \), where \(\frac{1}{3} n \leq |A| \leq \frac{1}{2} n \), such that \(N(A, V) \leq 4\sqrt{n} \).

- The expansion of a planar graph: \(O(1/\sqrt{n}) \).
Algebraic notion of graph expansion

- Let $A(G)$ be an $n \times n$ adjacency matrix of a d-regular graph G.
 - Each entry (u, v) contains the number of edges in G between u and v.
- Since $A(G)$ is symmetric, $A(G)$ has n eigenvalues $\mu_0 \geq \mu_1 \geq \cdots \geq \mu_{n-1}$.

Theorem: Let α be the expansion of G. Then $\mu_0 = d$ and

$$\frac{d - \mu_1}{2} \leq \alpha \leq \sqrt{2d(d - \mu_1)}.$$
Related work on testing expansion

- Testing whether \(G \) is an \(\alpha \)-expander: It’s still OPEN.
 - Lower bound for testing expansion: \(\Omega(\sqrt{n}) \) [Goldreich & Ron 2002].

Conjecture (Goldreich & Ron 2000)

In the bounded-degree model, a property tester for testing if a graph \(G \) is an \(\alpha \)-expander exists.

- The focus turned to the relaxed goal: distinguish between \(\alpha \)-expanders and graphs that are \(\epsilon \)-far from being an \(\alpha' \)-expander (\(\alpha' < \alpha \)).
To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being $\Theta(\frac{\alpha^2}{\log n})$-expanders (Czumaj & Sohler; FOCS’2007).

- Distinguishing between α-expanders and graphs far from being $\Omega(\alpha^2)$-expanders (Nachmias & Shapira; Information and Computation 2010)
To be concise, here we omit the factors of ϵ and d.

- **Distinguishing between α-expanders and graphs far from being $\Theta(\frac{\alpha^2}{\log n})$-expanders** (Czumaj & Sohler; FOCS’2007).

- **Distinguishing between α-expanders and graphs far from being $\Omega(\alpha^2)$-expanders** (Nachmias & Shapira; Information and Computation 2010)
To be concise, here we omit the factors of ϵ and d.

- Distinguishing between α-expanders and graphs far from being $\Theta(\frac{\alpha^2}{\log n})$-expanders (Czumaj & Sohler; FOCS’2007).

- Distinguishing between α-expanders and graphs far from being $\Omega(\alpha^2)$-expanders (Nachmias & Shapira; Information and Computation 2010).

\[
\begin{array}{cccc}
\alpha^2/\log n & \alpha^2 & \alpha & 1 \\
\hline
\end{array}
\]
1. Background on property testing
2. Testing expansion
3. The property tester by Czumaj & Sohler
4. Preliminaries
5. The sketch of the complexity analysis
Before we proceed with the tester . . .

- For each vertex $v \in V$, we add $2d - \deg(v)$ self-loops.
 - In this way, we obtain a $(2d)$-regular graph.

- And then, we study random walks on G.
 - For $v, w \in V$, we define $P(v, w) = \frac{1}{2d}$ if $(v, w) \in E$ and $P(v, w) = 0$ o.w.;
 - We define $P(v, v) = \frac{2d - \deg(v)}{2d} = 1 - \frac{\deg(v)}{2d}$ for each $v \in V$.
 - Obviously, $P(v, v) \geq 1/2$.
2d – \(\text{deg}(v)\) self-loops are added for each \(v \in V\).

\[P(v, w) = \frac{1}{6} \text{ if } (v, w) \in E \text{ and } 0 \text{ otherwise.}\]

\[P(v, v) = 1 - \frac{\text{deg}(v)}{6} \text{ for each } v \in V.\]
2d – deg(v) self-loops are added for each \(v \in V \).

\[
P(v, w) = \frac{1}{6} \text{ if } (v, w) \in E \text{ and } 0 \text{ otherwise.}
\]

\[
P(v, v) = 1 - \frac{\deg(v)}{6} \text{ for each } v \in V.
\]
A property tester of two-sided error.

Expansion-Tester(G, ℓ, m, s)
1: repeat s times;
2: Select a vertex $v \in V$ uniformly at random;
3: Perform m independent random walks of length ℓ starting from v;
4: Count the number of pairwise collisions between the endpoints of these m random walks;
5: if the number of pairwise collisions is $> \frac{1+7\epsilon}{n} \binom{m}{2}$
6: then reject;
7: accept;
Theorem 3.1 (Main Theorem)

Let $0 \leq \epsilon \leq 0.025$. With

$$s \geq \frac{48}{\epsilon}, m \geq \frac{12 \cdot s \cdot \sqrt{n}}{\epsilon^2}, \ell \geq \frac{16 \cdot d^2 \cdot \ln(n/\epsilon)}{\alpha^2},$$

Algorithm Expansion-Tester

- accepts every α-expander with probability $\geq \frac{2}{3}$, and
- rejects with probability $\geq \frac{2}{3}$ every graph that is ϵ-far from any $c \cdot \frac{\alpha^2}{d^2 \cdot \ln(n/\epsilon)}$-expander with probability $\geq \frac{2}{3}$, where $c > 0$ is a large enough constant.

The query complexity of this algorithm is $O(\ell \cdot m \cdot s) = O\left(\frac{d^2 \cdot \ln(n/\epsilon) \cdot \sqrt{n}}{\alpha^2 \cdot \epsilon^3}\right)$.
The general idea of how the tester works

- The graph is **regular** and **non-bipartite**, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For people who are familiar with Markov chains, the above distribution is called a **stationary distribution**.

- The key point is **how fast** (i.e., the **mixing time** of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.

- A graph with high expansion is believed to have fast mixing time.
The general idea of how the tester works

- The graph is **regular** and **non-bipartite**, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For people who are familiar with Markov chains, the above distribution is called a **stationary distribution**.

- The key point is **how fast** (i.e., the **mixing time** of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.

- A graph with high expansion is believed to have fast mixing time.
The general idea of how the tester works

- The graph is regular and non-bipartite, so the distribution of the endpoint of a random walk converges to a uniform distribution.
 - For people who are familiar with Markov chains, the above distribution is called a stationary distribution.

- The key point is how fast (i.e., the mixing time of the corresponding Markov chain) the distribution of the endpoints of the random walk converges to a uniform distribution.

- A graph with high expansion is believed to have fast mixing time.
The general idea of how the tester works (contd.)

How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?

- Repeatedly perform the random walk and count the number of collisions.
- We say that two random walks have a collision: their endpoints are the same.

If a graph is an α-expander, then the expected number of collisions should be small.
How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?

- Repeatedly perform the random walk and count the number of collisions.
- We say that two random walks have a collision: their endpoints are the same.

If a graph is an α-expander, then the expected number of collisions should be small.
How to know that the distribution of the endpoints of the random walk is close to the uniform distribution or not?

- Repeatedly perform the random walk and count the number of collisions.
- We say that two random walks have a collision: *their endpoints are the same*.

If a graph is an α-expander, then the expected number of collisions should be small.
For graphs far from α^*-expanders, the author showed that:

- There exists a subset $U \subseteq V$ with $|U| < n/2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.

- When the random walks do not proceed long enough, the **variation distance** between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.

- The above fact implies that the expected number of collisions of the random walks is high.
For graphs far from α^*-expanders, the author showed that:

- There exists a subset $U \subseteq V$ with $|U| < n/2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.

- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.

- The above fact implies that the expected number of collisions of the random walks is high.
For graphs far from α^*-expanders, the author showed that:

- There exists a subset $U \subseteq V$ with $|U| < n/2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.

- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.

- The above fact implies that the expected number of collisions of the random walks is high.
For graphs far from α^*-expanders, the author showed that:

- There exists a subset $U \subseteq V$ with $|U| < n/2$ such that the random walks starting from any $u \in U$ requires much longer mixing time.

- When the random walks do not proceed long enough, the variation distance between the uniform distribution and the distribution of the endpoints of the random walk starting from any $u \in U$ is large.

- The above fact implies that the expected number of collisions of the random walks is high.
1. Background on property testing

2. Testing expansion

3. The property tester by Czumaj & Sohler

4. Preliminaries

5. The sketch of the complexity analysis
Markov chains

- Markov chain: a sequence of random variables X_0, X_1, X_2, \ldots, (stochastic process) with the Markov property:
 - $\Pr[X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n] = \Pr[X_{n+1} = x \mid X_n = x_n]$.

- For all i, $X_i \in \Omega$, where Ω is a finite state space.

- $P : \Omega^2 \mapsto [0, 1]$ denote the matrix of the transition probabilities.
 - There is an underlying graph corresponding to P.
Markov chain: a sequence of random variables X_0, X_1, X_2, \ldots, (stochastic process) with the Markov property:

- $\Pr[X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n] = \Pr[X_{n+1} = x \mid X_n = x_n]$.

For all i, $X_i \in \Omega$, where Ω is a finite state space.

$P : \Omega^2 \mapsto [0, 1]$ denote the matrix of the transition probabilities.

- There is an underlying graph corresponding to P.
When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain \mathcal{M} has a stationary distribution π, which is a uniform distribution \mathcal{U}.

- $\pi = (\pi_x)_{x \in \Omega}$ is a stationary distribution of \mathcal{M} if $\sum_{j \in \Omega} \pi_j = 1$ and $\pi_j = \sum_{i \in \Omega} \pi_i \cdot P(i, j)$ for each $j \in \Omega$.
- That is, $\pi = \pi \cdot P$

A Markov chain \mathcal{M} is reversible if $\pi_x \cdot P(x, y) = \pi_y \cdot P(y, x)$.

In this paper, the random walk can be viewed as a Markov chain \mathcal{M}_G with state space $\Omega = \mathcal{V}$.

- It is easy to see that \mathcal{M}_G is reversible and has a uniform stationary distribution.
When the underlying undirected graph is regular, connected and non-bipartite, the Markov chain \mathcal{M} has a stationary distribution π, which is a uniform distribution \mathcal{U}.

- $\pi = (\pi_x)_{x \in \Omega}$ is a stationary distribution of \mathcal{M} if $\sum_{j \in \Omega} \pi_j = 1$ and $\pi_j = \sum_{i \in \Omega} = \pi_i \cdot P(i, j)$ for each $j \in \Omega$.
- That is, $\pi = \pi \cdot P$

A Markov chain \mathcal{M} is reversible if $\pi_x \cdot P(x, y) = \pi_y \cdot P(y, x)$.

In this paper, the random walk can be viewed as a Markov chain \mathcal{M}_G with state space $\Omega = V$.

- It is easy to see that \mathcal{M}_G is reversible and has a uniform stationary distribution.
Conductance is used to control the speed of convergence of a Markov chain. Here we adapt the original definition to \mathcal{M}_G.

- The conductance of \mathcal{M}_G:

$$\Phi_G = \min_{U \subseteq V, |U| \leq |V|/2} \frac{E(U, V \setminus U)}{2d \cdot |U|}.$$

- $E(U, V \setminus U)$: the set of edges between U and $V \setminus U$.

- If G is an α-expander, then $\Phi_G \geq \frac{\alpha}{2d}$.
Definition 4.1 (Variation distance)

The variation distance between two probability distributions \mathcal{X} and \mathcal{Y} over the same finite domain Ω is

$$d_{TV}(\mathcal{X}, \mathcal{Y}) = \frac{1}{2} \sum_{\omega \in \Omega} |\Pr_{\mathcal{X}}[\omega] - \Pr_{\mathcal{Y}}[\omega]|.$$

Let $P^t_x(y)$ be the probability that the Markov chain with the initial state x ends after t steps in a state y. We define that

$$\Delta_x(t) = \frac{1}{2} \sum_{y \in \Omega} |P^t_x(y) - \pi_y|.$$

to be the variation distance w.r.t. the initial state x between $P^t_x(\cdot)$ and π.

Variation distance
The rate of convergence & mixing time

Definition 4.2 (Rate of convergence)

The **rate of convergence** of a Markov chain M with initial state x to the stationary distribution is defined as

$$\tau_x(\zeta) = \min\{t : \Delta_x(t') \leq \zeta \text{ for all } t' \geq t\}.$$

We also call $\tau_x(\zeta)$ the **mixing time** of the Markov chain.
Proposition (Sinclair 1992)

\(M \): a finite, reversible, **ergodic** Markov chain and \(P(x, x) \geq 1/2 \) for all states \(x \);
\(\Phi \): the conductance of \(M \).

Then the mixing time of \(M \) satisfies

\[
\tau_x(\zeta) \leq 2\Phi^{-2} \cdot (\ln(\pi_x^{-1} + \ln(\zeta^{-1}))).
\]

- **Note:** The Markov chain \(M_G \) is “ergodic”, though we do not introduce this term since it involves quite many concepts so that we just ignore its definition in this talk.
Outline

1. Background on property testing
2. Testing expansion
3. The property tester by Czumaj & Sohler
4. Preliminaries
5. The sketch of the complexity analysis
Lemma 5.1 (Goldreich & Ron 2000)

\[\mathbb{E}[X_v] = \binom{m}{2} \cdot ||P^\ell_{v}||_2^2 \text{ and } \text{Var}[X_v] \leq 2 \cdot (\mathbb{E}[X_v])^{3/2}. \]

- \(C_{i,j;v} \): indicator random variable; \(C_{i,j;v} = 1 \) iff the \(i \)th and the \(j \)th random walks starting from \(v \) have a collision.

- \(X_v \): the number of collisions among the \(m \) random walks of length \(\ell \) starting from \(v \).
 \[X_v = \sum_{1 \leq i<j \leq m} C_{i,j;v}. \]

- \(P^\ell_{v} \): the distribution of the endpoint of the random walk of length \(\ell \) starting from \(v \).
 \[||P^\ell_{v}||_2 = \sqrt{\sum_{w \in V} (P^\ell_{v}(w))^2} \text{ (i.e., 2-norm)}. \]
 \[(P^\ell_{v}(w))^2 \]: The probability that two random walks of length \(\ell \) starting from \(v \) end at the same vertex \(w \).
(*) By setting \(\ell = \frac{16d^2 \cdot \ln(n/\epsilon)}{\alpha^2} \) and Sinclair’s proposition, we have
\[\| P_\ell^v \|_2^2 \leq (1 + \epsilon)^2 / n. \]

(**) Moreover, by Cauchy–Schwarz inequality \(\Rightarrow \| P_\ell^v \|_2^2 \geq 1 / n. \)

- Using (*) and Chebyshev’s inequality, we have the following lemma.

Lemma 5.2 (Accepting expanders)

Let \(m \geq \frac{12 \cdot s \cdot \sqrt{n}}{\epsilon^2} \) and \(\ell \geq \frac{16d^2 \cdot \ln(n/\epsilon)}{\alpha^2} \). Then Expansion-Tester accepts every \(\alpha \)-expander with probability at least \(\frac{2}{3} \).
As to the rejections

Lemma 5.3 (Rejections)

Let $0 < \epsilon < 0.1$, $0 < \delta < 1/2$, and $s \geq 2/\delta$. If there exists $U \subseteq V$ with $|U| \geq \delta n$, such that for every $u \in U$, $d_{TV}(P_u^\ell, \mathcal{U}) \geq 1.5 \sqrt{\epsilon}$, then Expansion-Tester rejects with probability at least $\frac{2}{3}$.

Ideas of the proof.

- $d_{TV}(P_u^\ell, \mathcal{U}) \geq 6 \sqrt{\epsilon} \Rightarrow$ high expected number of collisions for the random walks.

 - The expected number of collisions: $\binom{m}{2} \cdot \|P_u^\ell\|_2^2$.
 - We look for a probability vector P_u^ℓ with the variation distance constraint that minimizes $\|P_u^\ell\|_2^2$.

- Next, by the proof of Lemma 5.1, the observed number of collisions is $\geq (1 - \epsilon)\binom{m}{2} \cdot \|P_u^\ell\|_2^2$ with probability $\geq 1 - \frac{1}{3s}$.
As to the rejections (contd.)

The probability vector \(P_u^\ell \):

\[
\left(\frac{1 + 3\sqrt{\epsilon}}{n}, \ldots, \frac{1 + 3\sqrt{\epsilon}}{n}, \frac{1 - 3\sqrt{\epsilon}}{n}, \ldots, \frac{1 - 3\sqrt{\epsilon}}{n} \right)_{n/2 \text{ times}}, \quad \left(\frac{1 - 3\sqrt{\epsilon}}{n}, \ldots, \frac{1 - 3\sqrt{\epsilon}}{n}, \frac{1 + 3\sqrt{\epsilon}}{n} \right)_{n/2 \text{ times}}
\]

The vector of the uniform distribution \(U \):

\[
\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n} \right)_{n \text{ times}}
\]

We have \(\frac{1}{2} \cdot \sum_{w \in V} |P_u^\ell(w) - 1/n| = 1.5\sqrt{\epsilon} \) and \(\| P_u^\ell \|_2^2 = \frac{1 + 9\epsilon}{n} \).

So \((1 - \epsilon) \cdot \binom{m}{2} \cdot \| P_u^\ell \|_2^2 \geq \frac{(1-\epsilon)(1+9\epsilon)}{n} \cdot \binom{m}{2} > \frac{1+7\epsilon}{n} \cdot \binom{m}{2} \).
Any graph that is ϵ-far from any α^*-expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0 < \epsilon < 1$ and $\alpha^* \leq 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \leq \frac{1}{12}\epsilon n$ such that $G[V \setminus A]$ is an $\frac{4\alpha^*}{\beta}$-expander, then G is not ϵ-far from any α^*-expander.

- Note that $\beta = \Theta(1)$ is a constant concerning strong expansion, which is ignored for this talk.

Corollary 5.5

Let G be ϵ-far from any α^*-expander with $\alpha^* \leq 0.1$. Then there exists $A \subseteq V$ with $\frac{1}{12}\epsilon n \leq |A| \leq \frac{1}{2}(1 + \epsilon)n$ such that $|N_G(A, V)| < \frac{4\alpha^*}{\beta}|A|$.
Being far from α^*-expanders

Any graph that is ϵ-far from any α^*-expander has a small cut that separates a large set of vertices from the rest of the graph.

Lemma 5.4

Let $0 < \epsilon < 1$ and $\alpha^* \leq 0.1$. If G has a subset of vertices $A \subseteq V$ with $|A| \leq \frac{1}{12}\epsilon n$ such that $G[V \setminus A]$ is an $\frac{4\alpha^*}{\beta}$-expander, then G is not ϵ-far from any α^*-expander.

- Note that $\beta = \Theta(1)$ is a constant concerning strong expansion, which is ignored for this talk.

Corollary 5.5

Let G be ϵ-far from any α^*-expander with $\alpha^* \leq 0.1$. Then there exists $A \subseteq V$ with $\frac{1}{12}\epsilon n \leq |A| \leq \frac{1}{2}(1 + \epsilon)n$ such that $|N_G(A, V)| < \frac{4\alpha^*}{\beta}|A|$.
Lemma 5.6

Let A be a subset of V with $|A| \leq \frac{1}{2}(1 + \epsilon)n$ and $|N_G(A, V)| \leq \frac{|A|}{10(\ell + 1)}$. Then there exists a set U with $|U| \geq |A|/2$ such that for every $u \in U$,

$$d_{TV}(P^\ell_v, \mathcal{U}) \geq \frac{1 - 2\epsilon}{4}.$$

Note that $\frac{1-2\epsilon}{4} \geq 1.5\sqrt{\epsilon}$ for $\epsilon < 0.025$.

Being far from α^*-expanders (contd.)
\(A = \{ v_1 \}, \ N_G(A, V) = \{ v_2, v_3 \}. \)
$A = \{v_1\}$, $N_G(A, V) = \{v_2, v_3\}$.
Let $G_A = G[A \cup N_G(A, V)]$. Consider a random walk on G_A.

Y_i: the indicator random variable for the event that the ith vertex of the random walk is in $N_G(A, V)$.

- $\Pr[Y_i = 1] = \frac{|N_G(A, V)|}{|V(G_A)|}$
- **The reason:** the starting vertex is chosen uniformly at random & the stationary distribution is uniform.

We can show that $\Pr[\exists i \in \{0, 1, \ldots, \ell\}, Y_i = 1] \leq \frac{1}{10(\ell+1)}$.
The probability that an ℓ-step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1 - \frac{1}{10(\ell+1)} \geq \frac{9}{10}$.

Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U remains in A with probability $\geq \frac{3}{4}$.

Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U does NOT in A with probability $\leq \frac{1}{4}$.

In contrast to the uniform distribution: $\frac{|V \setminus A|}{|V|} \geq \frac{1-\epsilon}{2}$.
The probability that an ℓ-step random walk in G starting at a vertex chosen uniformly from A will remain in A is at least $1 - \frac{1}{10(\ell+1)} \geq \frac{9}{10}$.

Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U remains in A with probability $\geq \frac{3}{4}$.

Thus, there must be $U \subseteq A$ of size $\geq |A|/2$ such that a random walk starting from a vertex in U does **NOT** in A with probability $\leq \frac{1}{4}$.

In contrast to the uniform distribution: $\frac{|V \setminus A|}{|V|} \geq \frac{1-\epsilon}{2}$.
Putting everything together you will derive the proof of the main theorem.
Thank you!